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The evolution of passive magnetic fields is considered in random flows made up of 
single helical waves. In  the absence of molecular diffusion the growth rates of all 
moments of a magnetic field are calculated analytically, and it is found that the field 
becomes increasingly intermittent with time. The evolution of normal modes of the 
ensemble-averaged field is determined ; it is shown that the flows considered give fast 
dynamo action, and magnetic field modes with either sign of magnetic helicity may 
grow. 

1. Introduction 
Vainshtein & Zel’dovich (1972) posed the question of the existence of kinematic 

‘fast ’ dynamos : do there exist flows which generate magnetic field on the convective 
timescale, in the limit of small non-zero magnetic diffusivity? A related problem is 
to understand the growth of intermittency that occurs when a magnetic or scalar 
field is advected in a complex fluid flow. Many recent investigations have focused on 
deterministic flows, whether steady (see, for example, Arnol’d, et al. 1981 ; Galloway 
& Frisch 1986; Soward 1987; Gilbert 1988; Falcioni, Paladin & Vulpiani 1989; 
Gilbert & Childress 1990; Finn, et al. 1991) or unsteady (see, for example, Bayly & 
Childress 1988; Finn & Ott 1988; Ott & Antonsen 1989; Klapper 1992). An 
alternative approach is to explore magnetic field evolution in random flows. For such 
flows one can only calculate the evolution of ensemble-averaged quantities, and the 
detailed stretching and folding processes that occur in a typical realization are lost. 
However ensemble-averaging annihilates small-scale field components, and this can 
make diffusion easier to deal with than in deterministic dynamos. In fact when 
diffusion is weak, it may be neglected entirely when considering the evolution of the 
ensemble-averaged magnetic field on large scales (Dittrich et al. 1984) and if this 
grows the random flow is a fast dynamo. 

An analytical theory of dynamo action in general random flows is lacking 
(Knobloch 1977). For flows whose correlation time is exactly zero (i.e. delta- 
correlated flows), dynamo action and intermittency may be analysed in detail 
(Kazantsev 1967 ; Kraichnan 1974; Knobloch 1977 ; Novikov, Ruzmaikin & Sokoloff 
1983). Such flows are, however, somewhat unphysical, as a zero correlation time is 
shorter than the diffusive timescale for magnetic fluctuations of any lengthscale, no 
matter how small. For a general random flow with a finite correlation time, it is 
necessary to integrate the motion and stretching of fluid elements in many 
realizations (Kraichnan 1976b; Drummond & Horgan 1986 ; Drummond & Munch 
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1990) in order to follow the evolution of magnetic fields. These studies indicate that 
fast dynamo action occurs (see also Thompson 1990 and Finn et al. 1991). In  the 
absence of diffusion, magnetic fields become increasingly intermittent in time : there 
is uneven stretching and the strongest magnetic fields occupy ever-decreasing 
volumes of space. 

Our aim is to  study particular examples of random flows in which magnetic field 
evolution may be followed analytically without any approximation. Zel’dovich et al. 
(1988) (and references therein) have stressed the value of studying a particular class 
of homogeneous random flows, which they term ‘renewing flows ’ (or ‘renovating 
flows’). I n  such a flow time is split into discrete finite intervals of length r and the 
random velocity fields in different intervals are independent and identically 
distributed. Such flows were first introduced by Steenbeck & Krause (1969) and have 
also been used by Kraichnan (1976a) and Vainshtein (1981). Because of the well- 
defined ‘loss of memory’ between different time intervals, exact expressions for the 
evolution of moments of the magnetic field over one time interval may be given. 

On general grounds Zel’dovich et al. (1988) predict fast dynamo action and 
intermittency in renewing flows. However, in order to describe magnetic field 
evolution in specific examples of renewing flows one still needs to know Lagrangian 
information about the average motion and stretching of fluid elements over the finitc 
time 7 ,  which is difficult to obtain analytically for flows of any complexity. Therefore, 
in this paper we consider some renewing flows with a simple spatial structure : in each 
time interval the fluid motion comprises a single random helical wave. For these 
flows the advection and stretching of fluid elements are easily determined, and this 
enables us to study dynamo action and the growth of intermittency without recourse 
to approximation or large numerical simulations. In particular our analysis includes 
the limit of short correlation time, when T is much smaller than the turnover time of 
the waves (Kraichnan 1974; Dittrich et al. 1984), as well as the limit of long 
correlation time (Moffatt 1983). 

We begin by introducing renewing flows made up of helical waves ($2). We define 
the ‘isotropic renewing flow ’, in which the helical waves are isotropically distributed, 
and the ‘ABC renewing flow ’ in which the wave vectors are always aligned with a 
coordinate axis, as in the deterministic ABC flows (Dombre et al. 1986). In  $3  we 
calculate the growth rates of magnetic field moments, in the case of zero magnetic 
diffusivity, for the isotropic renewing flow ; these characterize the growth of 
intermittency in the magnetic field. With no magnetic diffusion, magnetic field lines 
are equivalent to material lines and this allows us to compare our results with the 
study of line stretching by Drummond & Munch (1990). 

I n  $4 we introduce magnetic diffusion and discuss its effects; in this case it is 
difficult to follow high-order moments of a magnetic field, and we focus on the 
ensemble-averaged magnetic field. This field can be decomposed into independent 
Fourier modes, and weak diffusion has a negligible effect on modes of large scale 
(Dittrich et al. 1984); it is then sufficient to observe growth in some mode a t  zero 
diffusion to conclude that the random flow is a fast dynamo. We establish that both 
the isotropic and ABC renewing flows give fast dynamo action, while the analogous 
pulsed flows in two-dimensions give decay of ensemble-averaged magnetic fields. 
Results in the case of the ABC renewing flow are supported by numerical simulations, 
which indicate that growth of magnetic field occurs in typical realizations, as well as 
in the ensemble average. We also discuss dynamo action in a renewing flow whose 
mean flow helicity is zero, but which lacks mirror symmetry. Finally in $ 5  we offer 
some concluding remarks. 
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2. Random renewing flows 
We begin by summarizing the properties of single helical waves written in the form 

( 1 )  u ( x )  = a sin (q - x  + $) + bh cos (4- x + $), 

together with two conditions 

a-q = 0,  b = q x a / q ,  (2) 

which ensure incompressibility. The wave has wave vector q and phase @, while the 
vectors a and b give its polarization. The parameter h (taken to satisfy Jhl < 1) 
controls the relative helicity H of the fluid flow, given by 

the integrals being taken over a period of the wave. When h = f 1, the waves are 
Beltrami, having maximal relative helicity, H = & 1 .  In this case the representation 
( 1) contains some redundancy ; a change of the phase of the wave corresponds simply 
to a rotation of the vectors a and b about q. More formally, for any angle p the flow 
(1) is invariant under 

(4) a + a cosp - bh sin p, b + ah sin p i- b cosp, $ + $- p, 

when h = f 1 .  The kinetic energy density of the flow is 

E ,  = i(l+h2)a'; (5)  

and it is convenient to introduce the turnover time T of the flow, defined by 

T-' = q(2EK)+. ( 6 )  

Now suppose that such a wave acts over a finite time interval ( n - 1 ) 7  < t < n7. 
During this interval a particle is advected from x to M ( x ) ,  where 

M ( x )  = x + a7 sin (q - x + $) + bh7 cos (q ex + I)). (7) 

In the absence of molecular diffusion a passive magnetic field B(x ,  t )  is transported 
according to 

B(x ,n7)  = J ( x ) . B ( M - l ( x ) ,  ( n - l ) 7 ) ,  (8) 

where the Jacobian of the transformation M is given by 

J,,(x) = i3xC/i3(M-l x ) ~  = 8, + a, qj7 cos ( q - x +  $) -bi qj h ~ s i n  ( q . x +  $). (9) 

Equation (8) also governs a line element advected in the flow. The equation for the 
vector potential A of the magnetic field B = V x A is 

A ( x ,  n7) = ( J - ' ( X ) ) ~ - A ( M - '  ( x ) ,  ( n -  1) T ) ,  (10) 

in a certain gauge (Roberts 1967). This equation also governs a directed area element 
advected by the flow and the gradient of a passive scalar. Note that in this gauge the 
magnetic helicity density is constant following a fluid element 

(11)  A ( x ,  n ~ ) . B ( x ,  n7) = A(M-'(x) ,  ( n -  1)7) .B(M-'(x) ,  ( n -  1)  7 ) .  
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The conservation of total magnetic helicity is a consequence of the preservation of 
the magnetic field line topology in a perfectly conducting fluid (Moffatt 1969). 

Now let us construct some random flows from such waves. Molchanov, Ruzmaikin 
BE Sokoloff (1984) define a 'renewing flow' as a random flow which is statistically 
homogeneous, and which is independcnt and identically distributed in distinct time 
intervals (n - 1) 7 d t < nr, with n = 1 ,2 ,3 ,  . . . . We consider renewing flows which 
take the form of a single wave (1) rhosen at random in each time interval. The flow 
is then specified by giving the distribution of the parameters q,  a,  $, h for any time 
interval. 

An isotropic ensemble of flows is obtained by letting the vector q be distributed 
uniformly on the sphere of radius q,  and the phase $ be distributed uniformly on thc 
interval (0,211). Once q has been choscn, the vector a is distributed uniformly on the 
circle of radius a in the plane perpendicular to  q .  The parameters a,q, h,r are non- 
random and describe completely the renewing flow, which is clearly isotropic and 
homogeneous. We call this the isotropic rencwing flow. 

An interesting anisotropic ensemble is obtaincd by choosing q out of the set of 
standard unit basis vectors a,g, 2, each basis vector having a probability Q of being 
chosen. Again $ is uniformly distributed on (0,27c) and a is uniformly distributed on 
the circle of radius a in the plane perpendicular to q.  Each flow in this ensemblc is 
periodic in the cube ( 0 , 2 1 1 ) ~ .  This ensemble is spccifically designed to  resemble the 
steady ABC flows studied by Arnol'd & Korkina (1983) and Galloway & Frisch 
(1986), and the unsteady flows studied more recently by Finn & Ott (1988) and Otani 
(1988). We therefore call this the ABC renewing flow. 

3. Magnetic field intermittency 
Because a renewing flow has a simple temporal structure, with a well-defined loss 

of memory at times t = n7, the advection of passive ficlds may bc studied in some 
detail. We begin by considering the growth of the momentts of the magnetic field, in 
the absence of any molecular diffusion. We use results that rely crucially on the 
homogeneity of the renewing flow, and it is necessary to  suppose that the initial 
conditions for thc magnetic field are also random and homogeneous. We use (.) to 
denote an average over both the ensemble of flows and the initial conditions for the 
field. 

Consider a single-point moment, of the field ((Bill  j . . . B l )  ( x , t ) ) ,  which is by 
hypothesis homogeneous at t = 0. In a renewing flow such a moment remains 
homogeneous a t  later times, and setting 

Rij,..l(n7) = ((BiBj.**Bl) ( x , n ~ ) ) .  (12) 

(Molchanov et al. 1984). The average here is over the distribution of flows in any one 
time interval. 

We illustrate the derivation of (13) in the casc of the second moment; from the 
Cauchy solution (8) : 

(4 (x,n~)B,(x,n7)) = ( J i j ( x ) J l c l ( x ) B j ( M - ' ( x ) ,  (n--1)7)&(M-'(xL (n- 1) 7)). 
(15) 
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Averaging over the distribution of flows in the period (0, (n- I )  7 )  and assuming 
inductively that the second moment is homogeneous a t  time t = (n- 1 )  7 gives 

(16) ( B i ( x ?  n7)Bk ( x ,  n7))  = ( J i j ( x )  J k l ( x ) > n j l  ( (n-  l )  7 ) .  

Thus the second moment is homogeneous at time n7 and given by (13), (14). 
We can apply this result to the evolution of a magnetic field carried by the 

isotropic renewing flow. For the second moment substitute two copies of the 
Jacobian (9) into (14) and average over the phase @ to obtain 

Hi, , ,  = (8ij 6 k ,  f &j Q1 (ai a k  + b i  b k  h2) T 2 ) .  (17)  

Hijk l  = Sij  + q272EK ( i S i k  ‘ j l  -i’(ij ‘ k l ) ) $  (18) 

Averaging over the directions of a and then q finally yields 

where the subscripted round brackets denote symmetrization, an average over 
permutations of the indices contained therein ; for example 

‘ ( i j  ‘k l )  = i(8ij ‘kl +‘ik ‘ j l +  ‘il ‘ j k ) .  

Suppose now that the initial magnetic field is isotropic as well as homogeneous, so 
that 

R i j  ( t  ) =  EM ( t  ) aij, 

EM (127) = ( 1  +&4272E,)nEM (0). 

(19) 

EM ( t )  being the magnetic energy density. Then from (18) : 

(20) 

The magnetic energy grows exponentially because of the stretching of field lines, as 
we would expect in the absence of molecular diffusion. 

To examine possible intermittency in the growing magnetic field we need to find 
higher moments. Although they may be found from (13), (14) their calculation can 
be simplified using certain results proved by Kraiehnan (1974), Zel’dovich et d. 
(1984) and Drummond & Munch (1990). We give a derivation suited to the 
development so far. We now assume that the renewing flow and the initial magnetic 
field are isotropic, as well as homogeneous. 

Define moments of the magnetic field amplitude by 

m) = (IWx, t )I”) ; (21) 

for even values of p these quantities determine the single-point pth-order moments 
(12), which take the isotropic form : 

where 

(22) 

(23) 

(omitting the argument of the Jacobian matrices). The index contractions may be 
written more compactly by introducing a vector variable X and the Laplacian 
operator A, = a2/8Xi axi : 
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(with X = 14). Now the averaged term in this equation is independent of the 
direction of the vector X because the renewing flow is isotropic and so the equation 
finally reduces to 

(27 ) 

where 8= X/X is any unit vector. This result was obtained by Molchanov et al. 
(1984) for any real value of p ,  by considering the stretching of individual vectors. 

Moving the symmetrization operation in line (24) from the unprimed to the primed 
indices gives the equivalent form : 

Bp(n7)/Bp((n- 1)7) = ((2. J ~ .  J . ~ P / ~ ) ,  

Bp(n7)/B”((n - 1 ) 7) = (2. J.  J ~ .  2~1~). (28) 

The equivalence of (27), (28) for the moments of the field has been discussed by 
Kraichnan (1974) and Drummond & Munch (1990). These authors note that as a 
consequence the moments of a field A ( x , t )  that  evolves according to (10) are 
governed by the time-reversed ensemble of random flows (see also Bayly & Childress 
1989). The particular renewing flows we consider are time-reversible, and so the 
equations governing the evolution of the statistical properties for A ( x ,  t )  are the same 
as those for B(x,  t ). Thus in these flows, any growth of intermittency is the same for 
magnetic fields, vector potentials and scalar gradients, as well as line and area 
elements. From (11) all moments of the magnetic helicity density are conserved in 
time, in the gauge for which (10) holds. 

For the isotropic renewing flow defined in 92 : 

BP(n7)/BP((n- 1 )  7 )  = (LP), (29) 

where we may take either 

L2 = 1 + aq7 sin 20 (cos $‘ cos $5 - h sin $‘ sin 4) 
+ ( ~ q 7 ) ~  cos2 0 (cos2 f + h2 sin2 @’), (30) 

from (27), or 

L2 = 1 + aq7 sin 20 (cos $‘ cos $ - h sin $‘ sin 4) 
+ ( a q ~ ) ~  sin2 0 (cos f cos $- h sin f sin @)2, (31) 

from (28), this giving a useful check on numerical calculations. Here $’ = ( q - x + $ )  
and is distributed uniformly. 0 is the angle between q and 2, so that cos 0 is uniform 
on the interval ( - 1 , l ) .  4 is the angle between a and the projection of 2 
perpendicular to q and is distributed uniformly. For comparison with the results of 
Drummond & Munch (1990) and Molchanov et al. (1984) we introduce stretching 
exponents y p  defined by 

i yo = lim y, = 7-1 (log L ) .  
P-0 

Thus the exponential rate of increase of the pth moment is p y ,  over long periods of 
time (for p + 0). 

For small values of aq7 + 1 and p = O ( l ) ,  (32) may be expanded (Drummond & 
Munch 1990), and the averages performed to give 

y p  = (7 /T2)  (Q+ (&- I)&) + O ( T ~ / T ~ ) .  (33) 
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FIGURE 1 .  Rates of growth of magnetic field moments in the isotropic renewing flow without 

magnetic diffusion. T y ,  is plotted against TIT for p = 0,1 ,2 ,  ..., 10 and Ihl = 1 .  
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FIGURE. 2. Ratios yJy0 as functions of TIT for p = 1,2, . . . , 10 in the isotropic 
renewing flow with Ihl = 1.  

This linear dependence of the stretching exponent on the index p was obtained by 
Kraichnan (1974) in the limit of a delta-correlated flow and by Drummond & Munch 
(1990) in an expansion taking into account moments of up to second order in the 
velocity field. 

For any values of the parameters, the stretching exponents (32) may be evaluated 
numerically. We begin by taking h = f 1 ,  so that the average over q5 is redundant. 
We measure the correlation time 7 and the growth rates y p  relative to the turnover 
time which is simply T = (aq)-'. Figure 1 shows T y ,  against r /T  for p = 0, 1,2,  . . ., 
10. For any value of r /T ,Ty ,  increases as a function of p .  This means that the 
distribution of magnetic field becomes increasingly intermittent with time, the 
strongest values of the field being concentrated in ever smaller regions of space. Such 
intermittency was predicted by Zel'dovich et al. (1984) on general grounds, and has 
been observed in deterministic chaotic flows (Ott & Antonsen 1989; Falcioni et al. 
1989) as well as random flows (Kraichnan 1976b; Drummond & Munch 1990). Note 
that the growth rate of energy, 2y,, is more than twice that of the mean field 
strength, y1 ; this behaviour is typical when there is zero magnetic diffusion (Hoyng 
1987a, b ) .  

Now consider varying r / T ;  in the short correlation time limit r /T  + 0, the growth 
in moments is weak and given approximately by (33). As r /T  is increased, the growth 
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FIQURE 3. Rates of growth of magnetic field moments for varying helicities in the isotropic 
renewing flow. Curves of Ty, against r / T  are plotted for p = 0, 1 ,2 ,3 ,4  with h = 0 (......), $ (------) 
and 1 (-). Note that the curves for different values of h coincide when p = 2. 

rates peak and then decay slowly. For example the maximum growth in magnetic 
energy occurs when T x 3 / q .  For a direct comparison with the results of Drummond 
& Munch (1990), we plot y p / y o  for different values of T/T (figure 2). I n  the short 
correlation time limit, y p / y o  tends to 1 +Q given by (33). For increasing values of TIT, 
y p / y o  decreases, particularly strongly for large values of p .  Drummond & Munch 
(1990) calculate y p / y o  for p = 1 , 2 , 3  and 7 /T  = 1 , 2 , 3  and also find values smaller 
than those given by the short correlation time limit. Unlike us, they observe a weak 
increase with T I T .  Presumably this reflects the complex structure of their flow fields, 
which are likely to stretch magnetic field more rapidly than ours when T/T is large. 

Finally we examine the effects of varying h, the helicity of the renewing ensemble. 
Figure 3 shows Ty ,  for p = 0, 1 , 2 , 3 , 4  and h = 0, +, 1.  The rate of growth of energy, 
2y,, is independent of helicity from (20) and there is only a weak variation with h for 
p =+ 2, as observed by Drummond & Munch (1990). 

4. Dynamo action in renewing flows 
We have seen how a magnetic field is stretched by a random renewing flow ; the 

magnetic energy increases while the field becomes ever more intermittent. However, 
there is presumably also a continual refinement of the scale of the field, and in a 
realistic situation magnetic diffusion must eventually become important. In this 
section we study the growth of magnetic field in the presence of weak molecular 
diffusion. I n  this case following moments of high order becomes impractical, since 
diffusion couples nearby points; in order to  calculate the growth in the single-point 
pth moment, one has to follow the evolution of the whole p-point pth moment. 
However, the first moment, which gives the mean (ensemble-averaged) field, is 
tractable (Dittrich et al. 1984), and the second moment has been studied by 
Kazantsev (1967) and Novikov et al. (1983) when the velocity field is delta-correlated 
in time and mirror-symmetric. We study the growth of the first moment in the 
isotropic and ABC renewing flows. 

When the fluid is imperfectly conducting, the magnetic field evolution is no longer 
given by the Cauchy solution (8) but is governed by 
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where the Green’s function G is random, depending on which random wave (1) is 
acting during the interval ( (n-  1)7,n7). The homogeneity of a renewing flow allows 
us to decompose the mean magnetic field into Fourier modes: 

(B(x ,  t )) = B(k, t ) exp (ik. x) d 3  k ,  (35) I 
with k.&k, t )  = 0. Note that in this section we do not require that the initial 
magnetic field be isotropic or homogeneous. These magnetic field modes evolve by : 

&k,n7) = G(k).&k, ( n - 1 ) 7 ) ,  (36) 

where the ‘response tensor ’ G(k)  is given by 

(see e.g. Kraichnan 1976a). Equivalent equations have also been obtained by 
Dittrich et al. (1984), who represent diffusion by taking an average of the Cauchy 
solution over random paths. Once the matrix G(k)  has been computed, the evolution 
of a Fourier mode is given by (36). Exponential growth occurs when the field vector 
is an eigenvector of G(k) belonging to an eigenvalue IY of magnitude greater than 
unity, the growth rate being h = 7-1 log IcrI. Growth of any mode implies growth of 
the magnetic energy ; however, the growth rate of energy will generally be greater 
than that of the most unstable mode because of phase mixing between different 
members of the ensemble (Hoyng 1987a, b ) .  

In the limit of weak diffusion, the growth rate of a given magnetic field mode 
B(k, n7) tends to the growth rate for zero diffusion (Dittrich et al. 1984) ; this greatly 
simplifies the fast dynamo problem for random flows. We illustrate this in a simple 
model in which we ‘pulse’ helical waves (Bayly & Childress 1988). Split each time 
interval of length 7 into two equal sub-intervals. In the first sub-interval the field 
undergoes frozen field advection according to (€9, the velocity field being twice that 
in ( l ) ,  and in the second sub-interval the fluid is stationary and the fields diffuse with 
a diffusion coefficient of 27. The Green’s function for this pulsed renewing flow is 

G&y) = (47cy7)-texp (-(x-My)*/477) Jt*(MY), 

b (k )  = (J(x)exp(ik.(M-’x-x)))exp(-y7k2). (39) 

(38) 

and the response tensor is given by 

From (39), we see that for a magnetic mode of fixed wavenumber k, the effect of 
diffusion is uniformly small in the fast dynamo limit 7 --f 0. This is because the small- 
scale fields generated by advection in each realization of the flow average to zero on 
taking the ensemble average (Kraichnan 1976a). Thus the effect of weak diffusion in 
a renewing flow is simply to provide a cutoff a t  high wavenumbers of any dynamo 
action, and so to check for fast dynamo action it is legitimate to set y = 0. 

We consider in turn the isotropic and ABC renewing flows. The calculation is 
simplest for the isotropic renewing flow, whose spherical symmetry makes the results 
straightforward to interpret. The ABC renewing flow is less symmetric than the 
isotropic flow, but it has the attractive property that it can be thought of as acting 
on a bounded domain, namely 2nperiodic space. When the parameter h is zero in 
these examples, the magnetic field does not grow in time. However, if we let h be a 
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FIGURE 4. Graphs of the growth rates TA, of magnetic field modes with positive and negative 
helicity against k/q for the isotropic renewing flow with h = 1 and 7 / T  = 32 (-), 16 (-....), 8 (-...), 
6 (----), 4 ( - - - - ) ,  2 (.. .. ..), 1 (--) and 8 (..-..-..). In ( a )  and ( b ) ,  TA- and TA+ are plotted respectively, 
using the same scales. 

random variable instead of a constant parameter, it is possible to have mean field 
growth in renewing flows with zero mean helicity. We illustrate this using a rcnewing 
flow with a simple asymmetric helicity distribution. 

4.1. The isotropic renewing flow 
The response tensor (39) is most easily evaluated when the relative helicity is 
maximal (h  = f 1) and the wavevectors q are distributed isotropically over the 
sphere of radius q ,  Then, for zero diffusion, 

(40) oij (k) = go (uk7) 8, + g ,  (uk7) (iuqh~/2k) eijk k,, 
where go (s) = (sin s)/sandg, (s) = (sins)/? - (coss)/s. 

One eigenvector of &k) is always k:  corresponding to the eigenvalue go (uk7). Since 
magnetic modes must be divergence-free, this eigenvector has no relevance to the 
dynamo problem. The relevant eigenvectors lie in the plane orthogonal to k. If we 
choose a coordinate system with the x-axis pointing along k ,  the eigenvectors of G(k) 
perpendicular to k take the form &k) = ( f i, 1 , O )  with corresponding eigenvalues : 

u* = go (ak7) f (!Hh7)g, (ak7), (41) 

and growth rates A,. The eigenvectors are helical waves of the ensemble-averaged 
field, with relative helicity f 1.t These results are exact for this model. Equations 
(40) and (41) may be approximated in the limit 7 / T  4 1 of short correlation time and 
k / q  d 0(1) to  recover results of mean-field electrodynamics (Dittrich et al. 1984). 

We non-dimensionalize all quantities using the turnover time T and the wave- 
number q of the flow. Figure 4(a) shows the growth rate TA- of magnetic field modes 
with negative helicity as a function of scale k / q ,  for different values of the correlation 
time 7 / T  and for h = 1. These modes are always unstable at large scales k / q  4 1. 
Thus these renewing flows give fast dynamo action. For small values of the 
correlation time there is just one range of scales, or window, of dynamo action. 
However, as 7 / T  is increased, the action of the helical waves becomes more 
persistent, and several windows of unstable magnetic modes appear. Figure 4(b) 
shows the growth rates TA, of magnetic modes with positive helicity. For small 
values of the correlation time there is no growth. However, as the persistence of the 
flow is increased, a window of dynamo action appears for t /T x 6, and then several 
windows appear. Thus sufficiently persistent random helical waves can amplify 

t The helicity meant here is that of the mean field, ( A ) . ( B ) ,  rather the ensemble-averaged 
magnetic helicity, ( A .  B ) ,  which is not readily calculated. 
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magnetic field modes of both signs of helicity. The growth can even occur for modes 
of the same spatial scale. 

For a general value of h, the magnetic response function is still given by (40), but 
now 

go(s, h)  = (sin (sx)/(sx)), 

g, (8, h) = (x-l lsin (sx)/(sx)2 - cos (sx)/(sx)I), 
where x2 = cos2 q5 + h2 sin2 q5,  and q5 is distributed uniformly in (0,27t). I n  fact, q5 is the 
angle between a and the projection of k perpendicular to q in each realization of the 
wave ( 1 ) .  As Ihl is decreased from 1, dynamo action becomes less effective; a t  h = 0 
all magnetic field modes decay at the same rate as scalar modes of the same scale. 

Dynamo action is impossible in two-dimensional flows (Cowling 1934 ; Zel’dovich 
1957) ; in the context of random waves all magnetic field modes decay to  zero. The 
waves analogous to those of equation (1) are of the form u(x )  = asin ( q . x + $ )  with 
the distributions of q and a restricted to some specific plane. Again a is required to 
be perpendicular to q and $ is uniformly distributed in ( 0 , 2 ~ )  to ensure homogeneity 
of the ensemble. In this case 

d,, (k) = 8, (exp (-ik.ar sin ( q . x + $ ) ) )  

and so all modes decay, as the modulus of the term ( * ) above is less than unity. I n  
two dimensions, the second and higher moments must also decay when there is 
diffusion ; this does not contradict the results of Q 3, which are only applicable for zero 
diffusion. 

4.2. The ABC renewing flow 

The only difference between the isotropic and ABC renewing flows, as far as 
calculations are concerned, is the set of q-vectors over which the average is taken. 
The important difference is that  the ABC renewing flow can be thought of as an 
ensemble of flows on a compact domain while the isotropic renewing flow cannot. The 
fact that  the present random dynamo mechanism works on compact domains is non- 
trivial, as there are other random models (e.g. Zel’dovich et al. 1984) that  work on 
unbounded domains but not bounded ones. 

The response tensor for the ABC renewing flow is obtained by substituting the unit 
coordinate vectors i,y ,̂ and Zfor q in (7),  (9) and averaging (39). The general formula 
is a sum of six Bessel functions, each with a different argument. 

For particular configurations of the magnetic field mode, we can obtain simpler 
formulae. If the relative helicity is maximal, h = & 1,  and the wavevector k is aligned 
with one of the coordinate axes, say the z-axis, then 

The eigenvectors relevant for dynamo action are again in the plane orthogonal to  k. 
I n  fact, they are the same as the eigenvectors for the isotropic flow, except now the 
corresponding eigenvalues are 

cr* = $ + : J o  (akr)T&hrJ, (akr). (43) 

In  figure 5 we plot Th, as functions of lc for various values of 7 / T .  The results are 
qualitatively the same as in the isotropic ensemble. I n  particular, for small values of 
r/T dynamo action occurs only for magnetic modes with negative helicity, while for 
large r /T  magnetic modes of either sign of helicity can grow. 



210 A .  D. Gilbert and B .  J .  Buyby 

(b)  

Th 

A !  
0.2 0.4 0.6 0.8 1.0 

k k 

FIGURE 5. Graphs of the growth rates TAi of magnetic field modes against k for the ABC renewing 
flow with h = 1 and 7 / T  = 16 (-). 8 (..... ). 4 ( ) .  In (a) and ( b ) ,  TA- 
and Th, are plotted respectively. 
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FIGVRE 6. Graphs of the growth rates TA- of magnetic field modes against r /T  for the ABC 
renewing flow with h = 1 .  We show results for various low-order rational values of k: (-), t (....), 
8 (. . . .) and 1 (----).  

We are particularly interested in fast dynamo action for k-vectors with rational 
components. For such wavevectors. the field and the flow are periodic with the same 
domain of periodicity on a sufficiently large scale. In  figure 6 we plot TA- as a 
function of r / l ’  for a few simple rational k-values. An interesting feature is that if 
k < 1, the dynamo operates for arbitrarily small TIT,  while k = 1 requires r/T > 7 
for dynamo action. In other words. long time correlations are required for the 
amplification of fields possessing the same periodicity as the ABC renewing flow. The 
dynamo works best if it has room in which to stretch the field before twisting and 
folding it. 

I n  order to confirm these results and verify that there is growth in typical 
realizations as well as in the ensemble average, we have undertaken some numerical 
simulations a t  zero magnetic diffusion. Consider the case with a = q = h = r = T = 

1 and k = t ;  the magnetic field is periodic with periodicity box V = [0, 4xI3. We take 
an initial magnetic field with negative helicity : B(x,  0) = (i, 1 , O )  exp (iiz). In  our 
numerical code we follow the evolution of field in a given realization of random waves 
and evaluate the projection onto the initial negative helicity mode, 

p(n)  = t(4n)-3Jv d3x( - i ,  I ,  o ) . ~ ( x ,  n)  exp (-iiz), 

together with the energy density. 

E,(n) = 9 ( 4 ~ ) - ~  ReB(x,  n)I2. Jvd 
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FIGURE 7. Growth of a magnetic field mode and magnetic energy in individual realizations. In (a) 
log Re P(n)  and in ( b )  log EM (n) are plotted as functions of time t = n. The solid straight lines give 
the growth rates for the ensemble-averaged quantities. The other line styles correspond to different 
realizations. 
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FIGURE 8. Graphs of the growth rates of magnetic field modes with positive and negative helicity 
against k l q  for the isotropic renewing flow with zero average helicity and r / T  = 80 (-), 40 (....), 
30 (. . . .) and 20 (----). In (a) and ( b ) ,  TA- and TA+ are plotted respectively. 

If we ensemble average, (P(n)) = crll where cr- = (1 +2J0(8)++JJ,(+)) x 1.0397 and 
(E,(n)) = &($)" (by a similar calculation to that in $3) .  The code evaluates the 
integrals by following the field from 5 x lo6 randomly chosen points in V for each 
realization. The number of points was varied to check that each curve obtained is 
correct and the magnetic field structure well-resolved. In figure 7 we show the growth 
of ReP(n)  and E,(n) for several realizations. Bot'h of these quantities grow a t  
approximately the same rate as the ensemble averages (which are shown by solid 
straight lines) ; however the projection Re P(n) shows rather larger fluctuations than 
the energy. Because of phase-mixing, ImP(n)  also grows (Hoyng 1987 a, b )  ; however, 
it remains small compared with ReP(n) during these simulations. 

4.3. Isotropic renewing Pow with zero mean helicity 
In the two examples discussed above, the dynamo ceases to operate when h = 0. Now 
let us  consider the effect of helicity fluctuations, so that instead of h taking a fixed 
value for all helical waves in our renewing flow, it is a random variable with a given 
probability distribution. If our ensemble of renewing flows is mirror-symmetric, the 
distribution for -h is the same as that for h,  and there is no dynamo action as 
(hg, (akr, h ) )  averages to zero. However, we can break mirror symmetry without the 
presence of average fluid helicity if we impose only the condition that (h) = 0 but 
allow different distributions of positive and negative helicity fluctuations. 

and h = -4 with 
probability i. Figure 8 shows growth rates of magnetic field modes against k / q  for 
several large values of T / T .  The turnover time here is defined by (6), but with E, 

For a concrete example, let us take h = 1 with probability 
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replaced by the average kinetic energy, ( E K )  = ia2.  Dynamo action is still possible 
in persistent flows with zero fluid helicity, provided that mirror symmetry is broken 
in some way. Gilbert, Frisch & Pouquet (1988) provide a deterministic example of a 
similar phenomenon. 

5. Conclusions 
We have studied the behaviour of magnetic fields in examples of renewing flows 

made up of random helical waves. Tho simple spatial and temporal structure of these 
flows enabled us to calculate analytically the growth of all single-point magnetic field 
moments in the absence of magnetic diffusion. I n  this case we find that a magnetic 
field becomes increasingly intermittent in time, as predicted by Zel’dovich et al. 
(1984). We discussed magnetic diffusion and studied normal modes of the mean 
magnetic field. When the fluid helicity is non-zero we see growth of magnetic field 
modes at zero diffusion, which, for renewing flows, implies fast dynamo action. If the 
flow is sufficiently persistent, having a long correlation time relative to the turnover 
time, magnetic fields with both signs of magnetic helicity may be amplified. We also 
found fast dynamo action in a renewing flow whose average fluid helicity is zero, but 
which lacks mirror symmetry. 

There remain a number of problems to be explored. Our random flows are 
characterized by a fixed lengthscale, l / q ,  as are those of Drummond & Munch (1990). 
It would be interesting to construct renewing flows which incorporate a whole range 
of space and time scales (see Childress & Klapper 1991), in order to have a crude 
model of the effects of inertial-range turbulence. I n  a model with no preferred 
lengthscale, the results for magnetic field intcrmittency may be qualitatively 
different; according to Batchelor (1952) all the stretching exponents, y p  should be 
equal in this case. Evidence supporting this hypothesis has been obtained by Malik 
(1990), who has measured the growth of surface areas (rather than lines) in random 
velocity fields made up of a range of scales. 

For the case of non-zero magnetic diffusivity, we limited ourselves to finding the 
evolution of the mean magnetic field. This demonstrated that fast dynamo action 
occurs, but gives us no information about the distribution of the quadratic 
quantities, such as energy and helicity, in magnetic fluctuations of different scales. 
This information is contained in the 2-point second moment of the field. It would be 
worth studying the evolution of the second moment in the renewing flows introduced 
in this paper. This would extend the work of Kazantsev (1967) and Novikov et al. 
(1983) to flows with finite correlation times and non-zero helicity. Such a study may 
lead to insight into the transfer and dissipative processes occurring in the fast 
dynamos that occur in these renewing flows. Finally we have seen that growth of 
magnetic field modes occurs in typical realizations of random flows; however, it 
would be interesting to carry out further numerical simulations of random dynamos 
to understand stretching and folding mechanisms, and study the field structure in 
individual realizations. 
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